If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-x^2+182=0
We add all the numbers together, and all the variables
-1x^2+x+182=0
a = -1; b = 1; c = +182;
Δ = b2-4ac
Δ = 12-4·(-1)·182
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-27}{2*-1}=\frac{-28}{-2} =+14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+27}{2*-1}=\frac{26}{-2} =-13 $
| 1.1=0.5x | | (3x+2)-(2x-7)(3x+2)=(3x+2)(-6-2x) | | 7m-22=34m= | | -24/(7-x)=-3 | | (X=48.333)3x-10= | | (4x+2)(2x-3)-(4x+2)(-5x+1)=0 | | 3/4+x=15/8-2x | | 1/8(3x-3)=-(6-x) | | 1/2+1/3+x=1 | | X=2x+10-3x | | 5r-2=3r-12 | | x=406/8 | | 3x-9=136 | | x(4x-8)=-3 | | 2×(2x+1)=4 | | 3^x(x-6)=0 | | 4^x=10-4^x+1 | | X/2+3x/7=13 | | n^2+n-25=0 | | 3x-4=-5x-8 | | (x-1)(x)=(2^20)(3^6)(5^5)(7^5) | | 8x+7=7x+3 | | 8x+7=5x+40 | | 2/7x^2+9/7x−8=0 | | (8x+7)=180 | | 1/8(3x-3)=(6-x) | | (3/w^2+2w-8)+(2/w^2+w-6)=4/(w^2+7w+12) | | 8/5r-2=3/5r | | 7x+4=3x-11 | | (5r+30)/20=(5r-30)/5 | | 14.1-0.282x=x | | (6x+20)=180 |